Proximal tibial reconstruction with auto transplantation

Proximal tibial reconstruction with auto transplantation

Proximal tibial reconstruction with auto transplantation of the fibular growth plate: two case reports, describing the surgical technique

Introduction

Tumors of the proximal tibia, in children, can affect the growth plate and pose a challenge to further reconstruction of the bone defects resulting from tumor resection. Reconstruction methods do not always compensate the potential for bone growth in this segment. We present a new surgical technique of bone reconstruction, based on the transposition of the ipsilateral fibula with its growth plate and the use of an internal sliding fixation device, without need for microsurgical technique.

Case description

We report two patients with osteosarcoma of the proximal tibia affecting the growth cartilage who were treated with the new technique.

Discussion and Evaluation

In both cases, bone healing, hypertrophy and longitudinal growth of the transposed fibula were documented.

Conclusions

This new technique preserves the blood supply of the auto-transplanted bone segment, maintaining physeal growth potential, with no need for microsurgery. The implant allows longitudinal bone growth, which was radiographically confirmed.

Level of evidence

Case report, Level IV.

Background

In the skeletally immature population, the proximal tibia hosts a growth plate that accounts for nearly 30 % of the final limb length in adulthood (Digby 1916). This is the second most frequent location of primary bone tumors, with the first being the distal femur (Mercuri et al. 1991). Tumors that develop in the proximal tibia before skeletal maturity can affect the growth plate and lead to discrepancies in the final length of the lower limbs (Fig. 1).

Figure 1: a Radiography of the tibia showing a proximal metaphyseal bone tumor. b MRI image showing no compromise of the proximal epiphysis by the tumor. c Resected specimen
Figure 1: a Radiography of the tibia showing a proximal metaphyseal bone tumor. b MRI image showing no compromise of the proximal epiphysis by the tumor. c Resected specimen

In young patients, reconstruction of bone defects resulting from tumor resection of this segment with traditional methods may show poor results after skeletal growth (Boyer et al. 1994). Some of this current methods include the replacement of the bone segment by megaprothesis, callotasis and the use of bone autograft or allograft (Saghieg et al. 2010). None of these techniques can replace the injured growth plate. Although callotasis allows bone lengthening, it may be impractical due to the need of multiple interventions for limb equalization in young children and the prolonged use of an external fixator device, which may favour infection in immunosuppressed oncological patients.

The advance of vascularized fibula autograft by microsurgical technique has allowed its use with the functioning physis in distant locations from its anatomical site (Agiza 1981; Langenskiöld 1983; Taylor et al. 1975). This has enabled the reconstruction of bone defects while keeping its growth potential (Pho et al. 1988). This technique, however, is costly and has potential complications.

In this study we describe a new surgical technique for reconstruction of bone lesions that compromise the proximal tibia and its growth plate in children and report two cases successfully treated with this technique. The patients, or their family, gave their consent for the use of their personal and medical information for the publication of this case report.

Surgical technique

With the patient on supine position, a single incision is used. Starting above the proximal tibiofibular joint, the incision bends to the anterior tibial crest and down along it, bending again medially a few inches below the previously planned fibular osteotomy (Fig. 2a). The anterior tibialis muscle is exposed. Its perimysium is opened and the muscle is retracted laterally, leaving the inner layer of the perimysium attached to the tibial periosteum, in order to preserve the wide margin of tumor resection (Fig. 2b). The neck of the fibula is identified and the common peroneal nerve is dissected. The proximal tibiofibular joint is addressed and the joint capsule, along with the anterior and posterior ligaments, popliteal ligament, fibular collateral ligament and the femoral biceps tendon are released from the fibular head (Fig. 2c).

Figure 2: a Single incision, b opening of the perimysium and lateralization of the anterior tibial muscle, c dissection of the proximal part of the fibula and d dissection of tibial epiphysis
Figure 2: a Single incision, b opening of the perimysium and lateralization of the anterior tibial muscle, c dissection of the proximal part of the fibula and d dissection of tibial epiphysis

The proximal epiphysis of the tibia and the anterior tuberosity are isolated from the metaphyseal region (Fig. 2d). A Kirschner wire is inserted horizontally trough the epiphysis where the proximal fixation of the plate will take place. The position of the plate is checked in this moment (Fig. 3a). The tumoral bone segment to be resected is measured, and oncologic margins are added. The distal osteotomy of the tibia at the diaphyseal region is performed. The posterior muscles attached to this portion of the bone are detached proximally, leaving the epiphyseal region that will be separated from the tumor by transepiphyseal osteotomy, and preserving as much of the epiphyseal bone and articular cartilage as possible. The tumor is now completely dissected and removed (Fig. 3b, c).

Figure 3: a Introduction of a wire-guide in the epiphysis and checking the position for the plate. b Separation of the tibial epiphysis from the tumor by transepiphyseal osteotomy and c tumor resected
Figure 3: a Introduction of a wire-guide in the epiphysis and checking the position for the plate. b Separation of the tibial epiphysis from the tumor by transepiphyseal osteotomy and c tumor resected

The bone gap is replaced by the ipsilateral fibula, which at this moment is isolated from the tibiofibular joint and the lateral collateral ligament. Two cm of periosteum is removed from the fibular shaft where the distal osteotomy will take place (Fig. 4a). After osteotomy, this segment of the fibular bone without its periosteum will be inserted in the bone marrow of the tibial shaft (Fig. 4b). The proximal segment of the fibula is medially transferred to the center of the remaining tibial epiphysis, along with all its muscles and nurturing arteries. The cartilage of the proximal epiphysis of the fibula is gently removed, so it can allow bone consolidation between the remaining proximal tibial epiphysis and the transposed fibula (Additional file 1: Video 5). The fibular collateral ligament is reinserted to the lateral periosteum of the tibia (Fig. 4c).

Figure 4: a Small periosteal removal from the fibula, b nailing the fibula in the medullary canal of the tibia, c repositioning of the fibula under the center of the tibial plateau and reinsertion of the lateral ligament and d proximal and distal osteosynthesis with screws
Figure 4: a Small periosteal removal from the fibula, b nailing the fibula in the medullary canal of the tibia, c repositioning of the fibula under the center of the tibial plateau and reinsertion of the lateral ligament and d proximal and distal osteosynthesis with screws

The osteosynthesis with screws is performed and a Baptista’s extendable internal fixation device, previously tailored for each case (Baptista and Yonamine 2001), is placed on the medial side of the leg (Fig. 4d). This device, made in Brazil by IMPOL, consists of two plates connected by a trapezoidal shaped rail interlocking that allows longitudinal sliding between them, but creates stability in all other directions (Additional file 2: Video 1) (Fig. 5a1, b1). The proximal plate has a platform to support the remaining portion of the tibial plateau and screw holes for attachment to the epiphysis (Fig. 5a2). The distal plate is low profile, to facilitate its coverage by the skin of the medial leg, and has holes for the screws in the tibial diaphysis (Fig. 5b2). The channels on each plate fit each other, stabilizing the junction while allowing slippage (Fig. 5ab). This device allows lengthening according to the fíbula longitudinal growth. It also provide axial compression when weight bearing starts.

Figure 5: a1 proximal plate, front view, b1 distal plate, front view, a2 proximal plate, side view, b2 distal plate, side view and ab fitting of the two plates, mounting the device
Figure 5: a1 proximal plate, front view, b1 distal plate, front view, a2 proximal plate, side view, b2 distal plate, side view and ab fitting of the two plates, mounting the device

The harvested fibula is interposed between the tibial epiphysis and the distal portion of the tibia. The surrounding soft tissues are reattached. After checking for vascular patency of the lateral side of the fibula, a closed vacuum wound drain is placed and the soft tissues are anatomically approximated. The limb is immobilized with an orthesis until osseous union of the proximal and distal junctions and hipertrophy of the fibula are radiographically confirmed (Additional file 3: Video 2) (Fig. 6), which usually occurs from 3 to 8 months postoperatively (Additional file 4: Video 3). Full weight bearing is authorized according to radiography consolidation and fibular hypertrophy (Additional file 5: Video 4).

Figure 6: a Surgical wound and b custom made orthesis
Figure 6: a Surgical wound and b custom made orthesis

Case presentation

Case 1

A 12 year old male patient with osteosarcoma of the proximal right tibia underwent wide tumor resection, with preservation of the proximal tibial epiphysis. The proximal fibula was medially transferred with its physis to the tibial epiphysis, preserving its blood supply, and osteosynthesis was performed with an extendable internal fixation device. After surgery, the limb was kept in an orthesis.

In the fourth postoperative month, radiographic evidence of consolidation was observed and load bearing was initiated with crutches. Full weight bearing started when fibular hypertrophy was radiographically evidenced, which occured at 14 months pos operatively. During follow up the patient returned to his full activities.

In this case, we did not use fix angle screws in the proximal plate, which resulted in valgus deviation that was clinically observed and radiographically evidenced by tilting of the screws (Fig. 7a–c). The patient underwent the first scanometry of the lower limbs one year after surgery, when 0.75 cm fibular growth was observed and reorientation of the screws was done (Fig. 7b–e). Spontaneous correction of the angular deviation was clinically observed and flattening of the screws was radiographically documented, confirming the fibular longitudinal growth and the sliding of the device. The second scanometry, held 26 months postoperatively, demonstrated 1.2 cm growth of the transposed fibula (Fig. 7f). The patient is now a 26 year old man who has been followed up for 14 years without recurrences. He has equalized, satisfactory functioning lower limbs (Additional file 6: Video 6) (Fig. 8).

Figure 7: a Preoperative magnetic resonance, b 4 months postoperative radiograph showing the slope of the tibial epiphysis screws, c patient at 4 months after surgery with valgus knee deviation, d patient at 1 year and 2 months after surgery, with fixed valgus deformity and e 1 year and 2 months postoperative radiograph showing fibula hypertrophy, screws tilt correction and growth of 0.75 cm and f radiography postoperative 2 years and 2 months with growth of 1.2 cm
Figure 7: a Preoperative magnetic resonance, b 4 months postoperative radiograph showing the slope of the tibial epiphysis screws, c patient at 4 months after surgery with valgus knee deviation, d patient at 1 year and 2 months after surgery, with fixed valgus deformity and e 1 year and 2 months postoperative radiograph showing fibula hypertrophy, screws tilt correction and growth of 0.75 cm and f radiography postoperative 2 years and 2 months with growth of 1.2 cm
Figure 8: a patient 3 years and 7 months postoperatively, at full load, b 3 years, 7 months, bending under load and good function of the knee, and c radiograph 3 years, 7 months, fibula hypertrophied, already fully tibializated
Figure 8: a patient 3 years and 7 months postoperatively, at full load, b 3 years, 7 months, bending under load and good function of the knee, and c radiograph 3 years, 7 months, fibula hypertrophied, already fully tibializated

Case 2

A 31 months old male patient presenting with Ewing’s sarcoma of the proximal right tibia underwent tumor resection with preservation of the proximal tibial epiphysis. The proximal fibula and its physis were medially transferred to the center of the tibial epiphysis, maintaining its blood supply. The osteosynthesis was performed using an extendable internal fixation device. In this case, the proximal plate was improved by creating a support to the remaining tibial plateau, aiming to improve stability and prevent angular deviations (Fig. 9b). Slots were made at every 3 mm of the distal plate to help observation of sliding between the plates, which would evidence fibular growth. After surgery, the limb was kept in an orthesis.

Figure 9: a The proximal-plate with a horizontal support, for proximal tibia epiphisial support, b immediate postoperative radiograph, c 3 months postoperative radiograph, showing the distal tibio-fibular consolidation and d 6 months postoperative radiograph, showing hypertrophy the fibula
Figure 9: a The proximal-plate with a horizontal support, for proximal tibia epiphisial support, b immediate postoperative radiograph, c 3 months postoperative radiograph, showing the distal tibio-fibular consolidation and d 6 months postoperative radiograph, showing hypertrophy the fibula

Load bearing was initiated in the third postoperative month. The patient continued on adjuvant chemotherapy and, in the fourth month, resumed walking without orthesis. During the first 8 months of follow up, approximately 0.3 cm growth of the transposed fibula was observed. Distal bone healing and initial fibular hypertrophy were radiographically confirmed (Fig. 9c, d). Non bone healing has occurred in the proximal fibula with the remnant epiphysis. Even though, full weight bearing occurred at 9 months after surgery (Additional file 5: Video 4), demonstrating the stability promoted by the Baptista’s extendable internal fixation device. After that period the patient died due to chemotherapy related complications.

Discussion

Reconstruction of bone defects resulting from resection of tumors compromising the growth cartilage of the proximal tibia in children represents a challenge to the orthopedist. Due to the low frequency of these lesions, this is a rare situation, in which our technique is for a specific indication: Proximal tíbia tumors resections when the growth line must be removed for oncological reason, but the epiphysis can be preserved, in children with remnant limb growth potential.

Yoshida et al. (2010), has compared multiple reconstruction alternatives at the knee level after tumor resection. They demonstrated that when epiphyseal maintenance is feasible, the vascularized fibular graft or callotasis techniques offers the highest score in the MSTS rating system (Enneking et al. 1993).

Distraction osteogenesis with external fixator eliminates the need of graft and allows padding of the bone defects created by tumor resection through callostasis. It requires, however, long periods with an external fixator device, which increases the risk of infection in patients potentially immunosuppressed by adjuvant oncological treatment (Kapukaya et al. 2000).

Bone grafts have been used for reconstruction of proximal tibial resections, especially in cases where the tibial epiphysis can be preserved (Honoki et al. 2008), which occurs in up to 20 % of cases (Norton et al. 1991; Simon and Bos 1980). When the graft is not vascularized, the technique presents high rates of fracture or non-union, and it does not prevent further limb discrepancy (Muscolo et al. 2004). Weitao et al. (2012) reported the use of allograft in the proximal tibia in 5 patients after tumor resection preserving the epiphysis. Delayed bone healing in Allograft-host junction were seen in all cases.

Transposition of the fibula shows advantages over the allograft in the bone healing process. Since it is a bone-muscle flap with natural vascularization, bone turnover is preserved and actively participates in the process of bone healing, while the growth potential of the physis is maintained. As seen in Figs. 7 and 9, the fibula undergoes progressive hypertrophy and strengthening, in contrast to allograft, which may fail even years after integration (Date et al. 1996; Hriscu et al. 2006).

The transfer of the fibula with its growth plate as a reconstruction method requires long term rehabilitation and late resuming of loadbearing ambulation, until bone healing of the tibia and the transposed fibula occurs. Hypertrophy of the fibula, which was reported in our two cases, evidences that the bone has achieved enough resistance required for loadbearing. Since this is a biological reconstruction method, once consolidation and hypertrophy occur, it can be considered a definitive solution, carried out with a single surgical procedure. The preservation of the proximal epiphysis of the tibia while maintaining the articular surface of the knee by trans epiphyseal osteotomy represents a mechanical advantage. It is also a necessary condition to use a fibular transposition. The maintenance of longitudinal growth of the transposed fibular segment, as documented in our two patients, is of major importance, since it can prevent or minimize the final discrepancy of the lower limbs length after growth.

Capanna et al. (2007) presented a original solution for long bones intercalary defects reconstruction associating massive allograft with vascularized fibular autograft. Good results were presented in 57 patients with proximal tibia reconstruction, nevertheless this technique does not address final limb discrepancy. The authors developed a good alternative to reconstructions of bone defect of the proximal tibia, but require microsurgery technique, which increases the cost of the procedure and the availability of bone allograft compatible in size with the patient, which is not widely available in some countries.

Our technique has the advantage to waive any method of vascular reconstruction of the fibular segment, since vessels are preserved. Fibular hypertrophy and longitudinal growth of the transplanted bone segments were observed in the two reported cases. Distal bone healing was succeeded in both cases. Proximally, there was a non union in the second case, due to the non resection of the proximal fibular articular cartilage which is essential for bone healing. This patient was schedule to a second procedure to resect the articular cartilage of the proximal fibula, but he had a clinical complication, from chemotherapy, which led to death. During the first 8 months after surgery, however, growth of at least 0.3 cm of the transposed fibula was documented, suggesting preservation of the growth potential (Fig. 9).

The first patient developed a valgus deformity of the right knee in the immediate postoperative period, which was corrected within the first post-operative year, after bone growth and correction of slope of the screws (Fig. 7). Long term resolution of the tibial reconstruction defect was observed in this patient, as documented by the equal length and normal function of lower limbs in adulthood. In spite of the restricted indication, we believe that our technique can positively affect the long term outcome of young patients undergoing reconstruction of proximal tibial defects.

Reconstruction of the proximal tibia with a megaprosthesis represents a therapeutic option when epiphysis must be resected. It allows limb preservation and early ambulation but High rates of complications have been reported such as infection, aseptic loosening, mechanical failure, and limitation to physical activities (Saghieg et al. 2010; Gosheger et al. 2006; Campanacci et al. 2010; Fang et al. 2013). This method requires multiple surgical procedures for revisions, reaching 42 % implant failures in 10 years follow up (Jeys et al. 2008). When epiphyseal maintenance is feasible, megaprosthesis has fewer indications. When early ambulation is priority for low expectation of life patients.

Conclusions

The authors believe the excellent longterm results in the first case and the ability to restore limb growth potential in both cases, avoiding further salvage surgical procedures, justify the application of this meticulous technique. The extensible internal fixation device stabilizes the reconstruction with the ipsilateral fibula and allows bone growth through sliding of the plates.

The purpose technique is indicated in intercalary proximal tibial resection, when the growth plate is removed for oncological purpose, in young children. Especially with high growth potential. The technique is not indicated in cases of low expectation of life due to the time required to initiate ambulation. In these situations a megaprosthesis might be preferred. More patients should be included on future studies to validate the reproducibility of this new technique.

Autor : Prof. Dr. Pedro Péricles Ribeiro Baptista

 Oncocirurgia Ortopédica do Instituto do Câncer Dr. Arnaldo Vieira de Carvalho

Bone Aneurysmal Cyst

Bone Aneurysmal Cyst

Aneurysmal Bone Cyst

Aneurysmal bone cyst (AOC) belongs to the group of pseudotumor bone lesions. This group of diseases produces bone changes that mimic tumor lesions, from the point of view of radiographic imaging.

Aneurysmal Bone Cyst

The injuries that are part of this group are:

simple bone cyst.

aneurysmal bone cyst.

juxtacortical bone cyst (intraosseous ganglion).

metaphyseal fibrous defect (non-ossifying fibroma).

eosinophilic granuloma.

fibrous dysplasia (osteofibrodysplasia).

myositis ossificans.

brown tumor of hyperparathyroidism.

intraosseous epidermoid cyst.

giant cell reparative granuloma.

The aneurysmal bone cyst, also called multilocular hematic cyst, is a lesion of insufflative bone rarefaction filled with serosanguineous fluid, interspersed with spaces varying in size and separated by septa of connective tissue containing trabeculae of bone or osteoid tissue and ostoclastic giant cells (fig 1 ).

Figura 1 - C.O.A. múltiplos septos de tecido conjuntivo
Figure 1 - COA multiple connective tissue septa

The origin and etiology of this process are still unknown, despite having been described by Jaffe and Lichtenstein since 1942. Cytogenetic studies suggest that there is a correlation between this lesion and chromosome 17 translocation phenomena.

The presence of osteoclast-type giant cells suggests that a process of localized bone reabsorption occurred, accompanied by accumulation of blood and septated either by connective tissue or by osteoid tissue with bone trabeculae.

These blood-filled cavities do not have blood supply that can be demonstrated by arteriography or intracystic contrast infusion and consequently do not have a pulsatile character. These pockets are not empty therefore they are not cysts nor do they represent any form of aneurysm. The term “aneurysmal bone cyst” is not appropriate for this condition.

It is therefore a benign lesion and according to Enneking it can be classified as active or aggressive benign. The presence of areas of fibrosis and reparative ossification is related to cyst regression or the result of a previous fracture (fig 2).

Figura 2 - Rm. axial T1. cisto ósseo aneurismático da tíbia.
Figure 2 - Rm. axial T1. aneurysmal bone cyst of the tibia.

The stores occur in varying numbers and sizes, clumping together and causing erosion of the bone trabeculae, which expand and inflate the cortex. Histologically, blood gaps are observed separated from each other by connective septa and osteoclastic cells, without atypia.

However, this “phenomenon” of an aneurysmal bone cyst may appear alongside other tumor lesions such as osteoblastoma   chondroblastoma  ,   chondromyxoid fibroma,  giant  cell tumor, teleangiectatic  osteosarcoma,   fibrous  dysplasia  and brown  tumor of hyperparathyroidism , in addition to metastatic lesions secondary to  thyroid  or  kidney neoplasia . These tumors with their characteristic histology may present isolated areas of the classic aneurysmal bone cyst. Therefore, small biopsy fragments can make accurate diagnosis difficult (fig 3).

Figura 3: Tumor de células gigantes do fêmur, com área de cisto ósseo aneurismatico. A escolha do local de biópsia deve permitir a obtenção de amostra representativa da heterogeneidade da lesão. A) COA ; B) TGC
Figure 3: Giant cell tumor of the femur, with an area of ​​aneurysmal bone cyst. The choice of the biopsy site should allow obtaining a representative sample of the heterogeneity of the lesion. A) COA; B) TGC

The choice of the biopsy site must allow obtaining a representative sample of the heterogeneity of the lesion:  A) COA  ;  B) TGC

Figura 4: Ressonância magnética, corte sagital, de tumor de células gigantes do fêmur, com área de cisto ósseo aneurismatico. Observa-se que a lesão apresenta áreas de conteúdo líquido (a-COA) e áreas sólidas (b-TGC).
Figure 4: Magnetic resonance imaging, sagittal section, of a giant cell tumor of the femur, with an area of ​​aneurysmal bone cyst. It is observed that the lesion has areas of liquid content (a-COA) and solid areas (b-TGC).
Figura 5: Corte axial de ressonância magnética de tumor de células gigantes do fêmur, com área de cisto ósseo aneurismatico. Idem: conteúdo líquido (a-COA) e áreas sólidas (b-TGC).
Figure 5: Axial MRI section of a giant cell tumor of the femur, with an area of ​​aneurysmal bone cyst. Idem: liquid content (a-COA) and solid areas (b-TGC).

It is observed that the lesion has areas of liquid content ( a-COA ) and solid areas ( b-TGC ).

The anamnesis and images of the lesion must be carefully analyzed, the biopsy site must be chosen that allows a sample to be taken from the different areas that appear heterogeneous on MRI, to allow for an accurate diagnosis.

The classic aneurysmal bone cyst has a homogeneous appearance, while the aforementioned tumor lesions, when accompanied by areas of aneurysmal bone cyst, necessarily become heterogeneous.

It is more frequent in the first three decades of life, with its peak incidence between 5 and 20 years of age, with a slight predominance in females.

The patient generally presents with mild pain at the site of the injury and when the affected bone is superficial, inflammatory signs such as increased volume and heat can be observed. Generally, the patient correlates the onset of symptoms with some trauma.

In evolution there may be a slow, progressive or rapidly expansive increase. It affects any bone, most frequently the lower limbs (tibia and femur representing 35% of cases) and vertebrae, including the sacrum and in the pelvis mainly the iliopubic branch. They can mimic joint symptoms when located in the epiphysis. Compromise in the spine can cause compressive neurological symptoms, although in most cases it affects the posterior structures.

GOALS

At the end of reading this chapter, the reader will be able to:

  • know the group of pseudo-tumor lesions;
  • characterize the typical aneurysmal bone cyst;
  • determine the imaging tests necessary to clarify the injury;
  • make the differential diagnosis;
  • choose the best treatment for each situation.

CONCEPTUAL SCHEME: COA

Figura 6: No estadiamento ósseo realizado com a cintilografia encontramos lesão única com captação discreta na periferia da lesão.
Figure 6: In the bone staging performed with scintigraphy, we found a single lesion with discrete uptake on the periphery of the lesion.
Figura 7: A tomografia revela área radiolucente; erosão óssea; afilamento da cortical e insuflação. sem focos de calcificação.
Figure 7: Tomography reveals a radiolucent area; bone erosion; cortical thinning and inflation. no foci of calcification.
Figura 8: COA da tíbia com insuflação da cortical.
Figure 8: AOC of the tibia with cortical inflation.
Figura 9: Aspecto homogênio com erosão da cortical.
Figure 9: Homogeneous appearance with cortical erosion.

In the bone staging performed with scintigraphy, we found a single lesion with discrete uptake on the periphery of the lesion.

Radiographically, it appears as a radiolucent insufflation lesion, preferably in the metaphyseal region of long bones (it can also occur in the epiphysis and diaphysis), with the presence of septa scattered throughout its content, with a “bullous” (or honeycomb) appearance, with thinning and expansion of the cortex, eccentric in 50% of cases or central location. They can also occur centrally in the cortical bone and in less than 8% of cases on the surface.

The radiographic appearance, however, is homogeneous. As the lesion progresses, a Codman’s triangle may form, giving a false impression of soft tissue invasion, which does not occur because the lesion always has a surface of connective tissue that circumscribes it (pseudo-capsule that delimits the area of injury to the compromised bone and adjacent tissues).  

Magnetic resonance imaging, by performing cuts in different planes, often shows the presence of liquid levels, highlighting the numerous pockets separated by the connective septa. The diagnosis of an aneurysmal bone cyst on biopsy is accepted with greater ease when the MRI analysis of the entire lesion does not reveal any heterogeneous aspect. The presence of a heterogeneous structure on magnetic resonance imaging, in which the solid area presents contrast impregnation, implies the need to obtain a sample from this area for diagnosis, as this must be a case of association of an aneurysmal bone cyst with one of the aforementioned lesions.

Figura 10: Aspecto bolhoso, com septos conjuntivos
Figure 10: Bullous appearance, with connective septa
Figura 11: Níveis líquidos.
Figure 11: Liquid levels.
Figura 12: Curetagem intralesional, bolsas com conteúdo sanguíneo.
Figure 12: Intralesional curettage, pockets with blood content.
The treatment of choice has been marginal resection or intralesional curettage, followed by filling the cavity with an autologous or homologous graft, when necessary. The cavity can also be filled with methylmethacrylate, although our preference is to use an autologous graft when possible, as it is a benign lesion. Some authors associate intralesional adjuvant treatment with the application of phenol, electrothermia or cryotherapy. In classic aneurysmal bone cysts, I do not see the point of this therapy, which, however, should be applied when the surgeon finds a “suspicious” area that was not detected on imaging. If the aforementioned benign tumors are involved, which may be accompanied by areas of aneurysmal bone cyst, local adjuvant therapy will be beneficial.
Figura 13: Cavidade após curetagem ampla.
Figure 13: Cavity after wide curettage.
Figura 14: Aspecto macroscópico do material obtido da cavidade.
Figure 14: Macroscopic appearance of the material obtained from the cavity.
Figura 15: Preenchimento da cavidade com enxerto ósseo.
Figure 15: Filling the cavity with bone graft.

Some bone segments such as the ends of the fibula, clavicle, rib, distal third of the ulna, proximal radius, etc. can be resected, without the need for reconstruction.

In other situations, we may need segmental reconstructions with free or even vascularized bone grafts or joint reconstructions with prostheses in advanced cases with major joint involvement. In the spine, after resection of the lesion, arthrodesis may be necessary to avoid instability.

Radiotherapy should be avoided due to the risk of malignancy, however it is reserved for the evolutionary control of lesions that are difficult to access, such as the cervical spine, for example, or other situations in which surgical reintervention is not recommended.

Embolization as an isolated therapy is controversial. However, it can be used preoperatively to minimize bleeding during surgery. This practice is most often used in cases of difficult access, although its effectiveness is not always achieved. Infiltration with calcitonin has been reported with satisfactory results in isolated cases.

Recurrence may occur, as the phenomenon that caused the cyst is unknown and we cannot guarantee that surgery repaired it. The recurrence rate can reach thirty percent of cases.

Questions:

1- The aneurysmal bone cyst:

a- it is a tumoral lesion

b- it is a metastatic lesion

c- occurs alone or accompanies other bone injuries

d- it is a pseudo-aneurysm

 

2- Differential diagnoses of COA include:

a- Chondrosarcoma

b- TGC

c- Ewing sarcoma

d- cortical fibrous defect

 

3- According to Enneking’s classification, the COA is:

a- active benign lesion

b- latent benign lesion

c- low-grade malignant lesion

d- high-grade malignant lesion

 

4- In relation to the COA, it is correct to state:

a- occurs more frequently in elderly patients

b- presents osteoclast-type giant cells

c- should preferably be treated with wide resection

d- presents foci of calcification

 

5- The radiographic appearance of the COA is:

a- condensing bone lesion

b- heterogeneous bone lesion

c- homogeneous bone rarefaction lesion

d- bone lesion without precise limits.

 

6- The preferential treatment of the COA is:

a- intralesional curettage

b- segmental resection

c- segmental resection + endoprosthesis

d- Arthrodesis

 

7- The tumor lesions that most frequently present areas of aneurysmal bone cyst are:

a- tgc; chondrosarcoma; osteosarcoma and Ewing’s sarcoma 

b- fibrous defect; tgc; adamantinoma and chordoma

c- osteoblastoma; chondroblastoma; chondromyxoid fibroma and tgc;  

d- osteosarcoma; chondroblastoma; eosinophilic granuloma and lipoma

 

Bibliography

 

  1. ALEOTTI, A.; CERVELLATTI, AA;BOVOLENTA, MR;ZAGOS,S. Et al Birbeck granules: contribution to the understanding of intracytoplasmic evolution. L.Submicrosc. Cytol. Pathol.,30(2):295, 1998.
  2. AVANZI, O.; JOILDA. FG;SALOMÃO, JC;PROSPERO, JD Aneurysmal bone cyst in the spine. Rev. Brás. Ortop., 31:103,1996
  3. AVANZI, O.; JOILDA. FG;PROSPERO, JD;CARVALHO PIN TO, W. Benign tumors and pseudotumor lesions in the vertebral hill. Rev. Brás. Ortop.,31:131,1996.
  4. BIESECKER, JL;HUVOS,AG.;MIKÉ. V. Aneurysm cap cysts.A clinicopathologic study of 66 cases, Cancer, 26:615,1970
  5. BURACZEWSKI, J.;M Pathogenesis of aneurysmal cap cyst. Relationship between the aneurysmal cap cyst and fibrous dysplasia of cap. Cancer, 28:116,1971.
  6. CDM Fletcher…[et al] . Classification of tumor. Pathology and genetics of tumors of sun tissue and bone. World Health Organization
  7. DABSKA, M,;BURACZEWSKI, J.- Aneurysmal cap cyst. Pathology, clinical course and radiological appearance. Cancer . 23:371,1969.
  8. DAHLIN, DC,;IVINS, JC- Benignin chondroblastoma of cap. A clinicopathology and electron microscopy study. Cancer .29:760,1972.
  9. DAILEY, R.; GILLILAUD, C.;McCOY, GB Orbital aneurysmal cap cyst in a patient with renal carcinoma. Am.J. Ophthalm., 117:643, 1944.
  10. DORFMAN ,HD;CZERBIAK,B.Bone tumors. St. Louis,CVMosby Co.,1997. P855.
  11. DORFMAN ,HD; STEINER, GC;JAFFE, HL Vascular tumors of thr cap. Hum. Pathol.,2:349, 1971.
  12. JAFFE, HL;LICHTENSTEIN, L. Aneurysmal cap cyst :observation on fifty cases. J.Bone Join Surg.,39 A:873, 1957.
  13. JAFFE, HL;LICHTENSTEIN, L .Benign chondroblastoma of cap. A reinterpretation of the so called calcifying or chondronaous giant cell tumor. Am J. .,18:969, 1942.
  14. JAFFE, H. L. Aneurysmal cyst.Bull cap. Hosp. J.Dis.,11:3,1950.
  15. LICHTENSTEIN, L Aneurysmal cap cyst. A pathological entity commonly mistaken for giant cell tumor and occasionally for hemangioma sarcoma. Cancer, 3:279,1954.
  16. MARTINEZ, V.;SISSONS.HA Aneurysmal cap cyst.A review of 123 cases including primary lesions and those secondary to other cap pathology. Cancer,61:2291, 1988.
  17. PROSPERO, JD;RIBEIRO BAPTISTA, PP;de Lima Jr., H. Bone diseases with multinucleated giant cells. Differential diagnosis. Rev. Brás. Ortop.,34:214,1999.
  18. RIUTTER,DJ,;VAN RUSSEL, THG;VANder VELDE, EA Aneuryamal cap cyst. A clinicopathological study of 105 cases. Cancer. 39:2231,1977.
  19. SCHAJOWICZ, F. Giant cell tumors aneurysmal cap cyst of the spine. J.Bone Joint Surg.,47B:699, 1965.

Author: Prof. Dr. Pedro Péricles Ribeiro Baptista

 Orthopedic Oncosurgery at the Dr. Arnaldo Vieira de Carvalho Cancer Institute

Endoprótese em Revisões de Artroplastias

Endoprosthesis in Arthroplasty Revisions

Endoprótese em Revisões de Artroplastias

Endoprosthesis in Arthroplasty Revisions

The use of unconventional endoprostheses in orthopedic oncosurgery has emerged as an alternative in cases of complications and failures in arthroplasties, offering an approach that deserves special attention. The publication of our lecture, held at the Advanced Hip Surgery Course in November 2022 at Hospital Sírio Libanês in São Paulo/SP, representing the Dr. Arnaldo Vieira de Carvalho Cancer Institute, the first cancer hospital in Brazil, aims to disseminate this distinctive technique as a solution for complex cases of revision in failed arthroplasties.

In the United States, hundreds of thousands of hip arthroplasties are performed annually, with revisions accounting for about 20% of them. A significant portion of the expenses underscores the importance of effective solutions for these cases.

The Paprovisky classification, used by hip surgeons to catalog femoral defects and provide guidance for treatment, mentions the use of endoprostheses as a last resort. The dogma instilled in surgeons to “always preserve bone stock” has resulted in numerous revision surgeries, representing a high social cost and creating significant hardships for patients.

We analyze two cases of hip prostheses that have been revised multiple times to illustrate the complexity of these situations and the need to keep an open mind to innovative approaches.

It is essential to recognize that arthroplasty revisions pose unique challenges, requiring detailed surgical planning, knowledge of described materials and surgical techniques, as well as a deep understanding of our patient’s clinical conditions and expectations.

The alternative use of unconventional endoprostheses and “en bloc resection” of the affected problematic segment should be considered, allowing us to offer all alternatives and opt for the one with the least morbidity and the highest probability of rapid functional recovery for the elderly patient.

As we progress in medical practice, it is essential to continue exploring and refining these techniques to provide the best possible care for our patients.

Check out the surgery video below.

Endoprótese em Revisões de Artroplastias

Endoprótese em Revisões de Artroplastias

Endoprótese em Revisões de Artroplastias

Endoprótese em Revisões de Artroplastias

As endopróteses não convencionais, empregadas na oncocirurgia ortopédica, tem se destacado como a alternativa, em casos de complicações e falhas nas artroplastias, oferecendo uma abordagem que merece atenção especial. 

A publicação de nossa palestra, realizada no Curso de Cirurgia Avançada do Quadril ocorrido em novembro de 2022, no Hospital Sírio Libanês – São Paulo/SP, representando o Instituto do Câncer Dr. Arnaldo Vieira de Carvalho, o primeiro hospital de câncer do Brasil, visa divulgar esta técnica distinta, como solução para casos complexos de revisão em artroplastias fracassadas.

Nos Estados Unidos são realizadas centenas de milhares de artroplastias do quadril anualmente, sendo que as revisões representam cerca de 20% delas. Uma parte significativa dos gastos, evidenciando a importância de soluções eficazes para esses casos.

A classificação de Paprovisky, utilizada pelos cirurgiões do quadril, que cataloga os defeitos femorais, procurando oferecer um parâmetro para orientar o tratamento, cita a utilização das endopróteses por último. O dogma incutido aos cirurgiões de “sempre preservarem o estoque ósseo” tem resultado em inúmeras cirurgias de revisão, representando elevado custo social e criado grandes desastres para os pacientes.

Analisamos dois casos de próteses do quadril, que foram revisadas inúmeras vezes, para ilustrar a complexidade dessas situações e a necessidade de termos a mente aberta para as abordagens inovadoras. 

É fundamental reconhecermos que as revisões de artroplastias representam desafios únicos, exigindo um planejamento cirúrgico detalhado, um conhecimento dos materiais e técnicas cirúrgicas descritas, bem como uma compreensão profunda das condições clínicas e expectativas do nosso paciente. 

A alternativa do emprego das endoprótese não convencionais e da “ressecção em bloco”, do problemático segmento afetado, deve ser considerada, permitindo-nos oferecer todas as alternativas e optarmos pela de menor morbidade e maior probabilidade do rápido restabelecimento funcional para o paciente idoso.

À medida que avançamos na prática médica, é essencial continuarmos explorando e refinando essas técnicas para oferecer o melhor cuidado possível aos nossos pacientes. 

Confira abaixo o vídeo da cirurgia.

Artrodese do doelho com Solução Protética ou Biológica

Artrodese do Joelho

Artrodese do doelho com Solução Protética ou Biológica

Artrodese do Joelho com Solução Protética ou Biológica

Em alguns casos de tumores ósseos e de traumas graves, as falências de próteses ou osteossíntese podem representar um desafio significativo. É nesse cenário que a artrodese do joelho emerge como uma alternativa viável. Esta técnica pode ser realizada de diversas maneiras, sendo uma delas com uma prótese do tipo diafisária ou através de uma solução biológica empregando-se enxerto autólogo e osteossíntese.

Por exemplo, quando nos deparamos com a falência de uma prótese primária infectada ou em situações de tumores ósseos agressivos ou traumas, a artrodese pode se tornar uma alternativa à amputação.

Consideremos este caso de condrossarcoma recidivado, após duas tentativas cirúrgicas, sem sucesso, em que a necessidade de uma ressecção ampla se faz presente, e a reconstrução com uma artrodese, pode ser a única alternativa para evitarmos a amputação. Nesses casos, a artrodese empregando uma prótese diafisária pode oferecer a chance de preservação deste membro.

O sucesso exige uma ressecção cuidadosa, com a remoção dos tecidos comprometidos, preservando os vasos poplíteos e nervos da região. Em seguida, é realizada a reconstrução com uma prótese modular do tipo diafisária, neste caso foi especialmente moldada, com a confecção de um segmento de polietileno, visando dar um formato mais estético para a região do “neo joelho”, minimizando o defeito deixado pela extensa ressecção do segmento afetado pelo tumor e atendendo ao objetivo de garantir uma ressecção ampla, com margens oncológicas seguras.

Neste outro exemplo de um tumor de células gigantes, que destruiu todo o planalto tibial e o 1/3 proximal da tíbia, a abordagem pode ser biológica. Nesse paciente, aproveitamos o osso autólogo do próprio local, no caso dos côndilos femorais, para preencher a falha óssea deixada pela ressecção da neoplasia.

É importante ressaltar que a técnica exige precisão e cuidado, tanto na ressecção quanto na reconstrução. A placa utilizada na fixação deve ser posicionada de forma a garantir um alinhamento adequado e evitar rotações indesejadas. A integração da artrodese com o enxerto autólogo biológico é fundamental para o sucesso do procedimento.

Em casos de traumatismos graves, com grande destruição óssea devido a traumas de alta energia, a artrodese pode ser a única opção viável para restaurar a estabilidade do membro e evitar a amputação. Esses casos, que estamos mostrando, foram apresentados no Congresso Internacional de Trauma no Joelho, em Ribeirão Preto – SP, mostrando a nossa experiência com estas duas técnicas de artrodese, empregando próteses diafisária ou osteossíntese com reconstrução biológica. Para mais informações sobre essas técnicas e apreciação de outros casos clínicos semelhantes, visite o site  www.oncocirurgia.com.br,

 Através do compartilhamento de conhecimento e experiências, poderemos avançar no desenvolvimento para o tratamento de condições ortopédicas complexas.

Confira abaixo o vídeo da cirurgia.

Tumor Ósseo Primitivo: Sarcoma de Ewing

Sarcoma de Ewing Transposição do rádio para a ulna

Tumor Ósseo Primitivo: Sarcoma de Ewing

Sarcoma de Ewing

Transposição do rádio para a ulna

Sarcoma de Ewing. Em 2007, realizamos um procedimento cirúrgico para tratar um tumor ósseo primitivo, diagnosticado como Sarcoma de Ewing. Esta forma de tumor é conhecida por sua agressividade e desafios no tratamento. A intervenção cirúrgica envolveu a ressecção da ulna, um osso do antebraço, que estava afetado pela lesão.

Antes da cirurgia, exames como a cintilografia óssea e ressonância foram realizados para estadiar a extensão do tumor. Os resultados indicaram uma lesão única na ulna direita. Optamos por uma abordagem cirúrgica após a fase de quimioterapia neoadjuvante.

A cirurgia começou com a preparação meticulosa do paciente e a delimitação do trajeto da biópsia para orientar a ressecção, com margem oncológica. O osso ilíaco foi preparado para obtermos um segmento de enxerto autólogo, necessário para a reconstrução do punho, após a remoção do segmento da ulna comprometido. Utilizamos o termo cautério (bisturi elétrico) para dissecar os tecidos com melhor hemostasia e precisão, minimizando danos aos tecidos circundantes e obtendo melhor margem oncológica.

Após a delimitação circunferencial do tumor, realizamos a ressecção da ulna comprometida, seguida pela preparação da reconstrução com a colocação da cabeça do rádio, o outro osso do antebraço, no sulco entre os côndilos umerais, adequado para funcionar com flexo-extensão, neste novo antebraço de um só osso. O segmento de enxerto ósseo do ilíaco foi então usado para promover a sinostose rádio-ulnar distal, ou seja, a fusão dos ossos rádio e ulna, estabilizando o novo punho.

Durante a cirurgia, técnicas de sutura foram empregadas para fixar a cabeça do rádio no tendão do músculo tríceps braquial, para assegurar a estabilidade do neo cotovelo, propiciando uma satisfatória flexo-extensão. Parafuso e pino foram utilizados para garantir a fixação adequada da sinostose rádio ulnar distal.

Após a conclusão da cirurgia, foi realizada uma radiografia para avaliar o resultado do procedimento. O tumor foi completamente ressecado, e a reconstrução do osso foi bem-sucedida. O paciente foi orientado sobre os cuidados pós-operatórios, incluindo fisioterapia para promover a recuperação funcional do membro afetado.

A cirurgia foi um marco importante na jornada do paciente contra o sarcoma de Ewing, representando um passo significativo no tratamento dessa doença complexa e propiciando uma boa função do membro operado.

Através de uma abordagem multidisciplinar e tecnologia adequada, conseguimos cumprir nosso compromisso em proporcionar o melhor cuidado possível aos pacientes que enfrentam desafios de saúde tão complexos e difíceis.

Prof. Dr. Pedro Péricles Ribeiro Baptista    drpprb@gmail.com  +55 11 99863-5577

Confira abaixo o vídeo da cirurgia.

Condroblastoma

Condroblastoma

Condroblastoma

O condroblastoma é uma neoplasia benigna rara que corresponde a aproximadamente 1,8% de todos os tumores ósseos. Este tipo de tumor tem preferência pela epífise dos ossos longos e geralmente se manifesta como uma lesão de rarefação óssea, com focos de calcificação. É mais comum em pacientes do sexo masculino, ocorrendo tipicamente durante a primeira e segunda décadas de vida, quando a placa de crescimento ainda está aberta.

Descrito inicialmente por Codman em 1931, o condroblastoma foi inicialmente associado ao “tumor de células gigantes calcificado” do úmero proximal. No entanto, estudos posteriores mostraram que se tratava de uma entidade tumoral distinta do tumor gigantocelular (TGC).

Devido à sua localização intra-articular, o condroblastoma pode apresentar sintomas semelhantes aos da artrite. Além disso, pode demonstrar agressividade local, causando erosão da cortical óssea, da placa de crescimento e invasão articular. Frequentemente, áreas de cistos ósseos aneurismáticos podem estar associadas a manifestações radiográficas de agressividade local.

O tratamento do condroblastoma geralmente envolve a curetagem intralesional seguida de adjuvantes locais, como fenol, eletrotermia ou nitrogênio líquido, além da colocação de enxerto ósseo autólogo ou cimento de polimetilmetacrilato. Em casos mais avançados, pode ser necessária a ressecção segmentar seguida de reconstrução com prótese ou artrodese em casos recidivados ou muito avançados.

O prognóstico do condroblastoma pode ser reservado devido ao risco de recidiva local e às possíveis complicações ortopédicas, incluindo degeneração articular e déficit de crescimento.

Embora raramente, o condroblastoma pode levar a metástases pulmonares com histologia semelhante à do tumor benigno, sem apresentar atipias. O tratamento para essas metástases pode ser o acompanhamento clínico e de imagens e se a observação indicar evolução pode se fazer necessária a exérese cirúrgica.

Em resumo, o condroblastoma é uma neoplasia óssea benigna que, embora rara, requer atenção cuidadosa devido à seu potencial de agressividade local e possíveis complicações a longo prazo. O diagnóstico precoce e o tratamento adequado são essenciais para garantir o melhor prognóstico possível para os pacientes afetados.

veja o caso de Condroblastoma do Fêmur

Autor : Prof. Dr. Pedro Péricles Ribeiro Baptista

 Oncocirurgia Ortopédica do Instituto do Câncer Dr. Arnaldo Vieira de Carvalho

Tumor de Células Gigantes

Tumor de Células Gigantes

Tumor de Células Gigantes

Características, Diagnóstico e Tratamento

O tumor de células gigantes, também conhecido como TGC, é uma neoplasia de natureza mesenquimal que se destaca pela proliferação de células multinucleadas de grande porte, denominadas gigantócitos. Essas células assemelham-se aos osteoclastos e são encontradas em meio a um estroma de células mononucleadas. Devido à sua morfologia histológica peculiar, o diagnóstico preciso muitas vezes requer uma análise minuciosa do quadro clínico e radiográfico, a fim de evitar confusões com outros processos patológicos.

A manifestação principal do tumor gigante de células é a dor local intermitente, frequentemente acompanhada de aumento de volume na região afetada e restrição dos movimentos articulares adjacentes. O período de evolução varia de 6 a 12 meses, dependendo do osso comprometido, sendo comum relatos de trauma como desencadeador inicial dos sintomas.

Este tipo de tumor tende a acometer um único osso, principalmente os ossos longos como o fêmur, tíbia, úmero e rádio. No entanto, em casos mais raros, pode ocorrer em ossos do esqueleto axial, com predileção pelo sacro. A incidência é mais comum entre a terceira e quarta décadas de vida, afetando igualmente ambos os sexos.

Radiograficamente, o TGC se apresenta como uma lesão epifisária caracterizada por rarefação óssea, inicialmente excêntrica e posteriormente comprometendo a cortical. A confirmação diagnóstica é obtida através da análise histológica, que revela a presença de células gigantes multinucleadas e estroma de células fusiformes.

O tratamento do tumor de células gigantes é bem estabelecido e visa à ressecção segmentar da lesão, sempre que possível, garantindo margens de segurança tanto ósseas quanto de partes moles. Nos casos em que a ressecção segmentar não é viável, como na coluna cervical, a curetagem endocavitária seguida de terapia adjuvante é indicada. Dentre as opções terapêuticas adjuvantes estão o laser CO2, o fenol diluído em álcool à 4%, o nitrogênio líquido e a eletrotermia.

A técnica da eletrotermia tem se mostrado eficaz na complementação da curetagem, proporcionando uma limpeza mais completa da cavidade tumoral. Após a eletrotermia, a fresagem da cavidade com o uso de instrumentos apropriados como o lento dril é realizada para garantir a remoção completa das células tumorais remanescentes.

O preenchimento da cavidade tratada pode ser feito com diferentes materiais, como enxerto ósseo autólogo, substitutos ósseos ou metilmetacrilato, cada um com suas vantagens e desvantagens. O acompanhamento pós-tratamento é essencial para monitorar a recorrência da doença e garantir a eficácia do tratamento realizado.

Em resumo, o tumor de células gigantes é uma condição complexa que requer uma abordagem multidisciplinar para garantir o melhor resultado terapêutico e a qualidade de vida do paciente. O avanço nas técnicas de diagnóstico e tratamento tem contribuído significativamente para melhorar o prognóstico desses pacientes, oferecendo opções terapêuticas cada vez mais eficazes e seguras.

Sarcomas em Tecidos Moles

Sarcomas em Tecidos Moles

Sarcomas em Tecidos Moles

Introdução:

A cirurgia oncológica ortopédica abarca o tratamento de lesões musculoesqueléticas, incluindo neoplasias ósseas benignas, malignas, lesões pseudo-tumorais e neoplasias benignas e malignas de tecidos moles. O sarcoma de tecidos moles é uma neoplasia maligna derivada do mesoderma, ocorrendo nos tecidos moles, como músculos, fáscias, tendões etc., diferenciando-se dos carcinomas, que têm origem embrionária no ectoderma.

Etiologia:

A maioria dos sarcomas de tecidos moles não tem uma causa definida, mas alguns fatores de risco estão bem descritos, como radioterapia prévia, linfedema, síndrome de Li-Fraumeni, neurofibromatose tipo I, propensão genética individual e infecção pelo vírus HIV.

Incidência:

É um tumor raro, representando cerca de 12% das neoplasias pediátricas e apenas 1% de todos os tumores malignos em adultos. Nos EUA, estima-se 12 mil casos novos por ano, resultando em cerca de 4700 mortes. Cerca de 60% dos sarcomas de tecidos moles surgem nos membros, predominando na coxa, seguidos pela parede torácica e retroperitônio.

Classificação:

A classificação do sarcoma de tecidos moles é baseada no subtipo histológico, como lipossarcoma, sarcoma sinovial, rabdomiossarcoma etc. O grau histológico também é usado, sendo dividido em Grau 1 (bem diferenciado), Grau 2 (moderadamente diferenciado) e Grau 3 (pouco diferenciado).

Quadro clínico:

O quadro clínico inicial é caracterizado por um abaulamento tumoral palpável, muitas vezes indolor, com crescimento progressivo, principalmente na coxa. Alguns pacientes podem apresentar dor e parestesia por efeito compressivo tumoral. A febre ou emagrecimento são sintomas excepcionais.

Estadiamento:

No diagnóstico, o sarcoma de tecidos moles raramente apresenta metástase, ocorrendo mais frequentemente como tumores de grande volume, profundos à fáscia muscular e de alto grau. O padrão de disseminação é principalmente hematogênico, com metástases pulmonares predominantes.

Exames de imagem:

Os exames incluem radiografia, ressonância magnética, tomografia, PET-CT e cintilografia. A biópsia é indicada para diagnóstico histológico, e pode ser realizada de diversas maneiras, dentre elas destacam-se a biópsia percutânea com agulha, incisional (cirúrgica), guiada por ultrassom ou tomografia.

Patologia:

O patologista desempenha um papel crucial no diagnóstico, realizando desde exames como o de congelação, para garantir a representatividade da amostra, e posteriormente o estudo microscópico em parafina, para o diagnóstico histopatológico bem como determinar o grau histológico do tumor. A imuno-histoquímica é um recurso importante para complementar o estudo da amostra.

Sarcoma de Ewing Diagnóstico e Tratamento

Sarcoma de Ewing Diagnóstico e Tratamento

Sarcoma de Ewing

Diagnóstico e Tratamento

Sarcoma de Ewing Diagnóstico e Tratamento. O sarcoma de Ewing é um tumor maligno composto por células indiferenciadas, pequenas e redondas, que representa um desafio clínico significativo devido à sua natureza agressiva e rápida disseminação. Este tipo de neoplasia tem uma incidência máxima na primeira e segunda décadas de vida, sendo menos comum após a terceira década, e exibindo uma proporção de 2:1 entre os sexos masculino e feminino.

Embora a origem exata das células do sarcoma de Ewing tenha sido objeto de controvérsia, estudos recentes sugerem uma origem neuro ectodérmica. Esses tumores frequentemente surgem na região meta diafisária dos ossos tubulares longos e na pelve, e sua característica macroscópica inclui uma lesão óssea de cor cinza-esbranquiçada e consistência mole. Uma característica distintiva é a formação de reação lamelar fina, resultando em uma aparência radiográfica de “casca de cebola” e com uma quantidade grande de lesão extra cortical.

No exame histológico, o sarcoma de Ewing apresenta células uniformemente distribuídas, pequenas e redondas, semelhantes a linfócitos, mas de tamanho maior. A técnica de impregnação argêntica revela escassez de fibras de reticulina, comumente encontradas apenas ao redor de vasos sanguíneos e no linfoma. Manifestações clínicas incluem dor, tumefação, hipersensibilidade local e aumento na velocidade de hemossedimentação, podendo inicialmente se assemelhar a quadros de osteomielite.

O diagnóstico diferencial envolve distinção com osteossarcoma, granuloma eosinófilo, rabdomiossarcoma e osteomielite. O tratamento atualmente adotado consiste em poliquimioterapia pré-operatória seguida de cirurgia para ressecção da lesão, complementada por poliquimioterapia pós-operatória.  A reconstrução do segmento pode ser realizada após a ressecção, utilizando-se endoprótese ou soluções biológicas com enxertos ósseos autólogo. Nas crianças pode-se empregar técnicas de autotransplante da placa de crescimento, transladando a placa da fíbula para a tíbia ou para outras localizações como o ombro e o punho, nestes casos com o auxílio da microcirurgia.

A avaliação da resposta à quimioterapia pré-operatória é fundamental, tendo valor prognóstico e orientando o tratamento subsequente. Esta avaliação é classificada em graus, dependendo do percentual de necrose tumoral observada. Com os avanços no tratamento quimioterápico, os pacientes têm alcançado excelentes respostas e perspectivas de “cura”, o que tem impulsionado o uso de soluções biológicas no tratamento cirúrgico, visando evitar complicações associadas às endopróteses ou enxertos de banco, cuja durabilidade pode ser limitada.

Portanto, a compreensão abrangente do sarcoma de Ewing, desde o diagnóstico até as opções terapêuticas, é essencial para fornecer o melhor cuidado possível aos pacientes afetados por essa neoplasia maligna desafiadora.

1 2 3 8
Olá! Como podemos auxiliá-lo?